Solution:
If \( f(g(x)) = x \) and \( g(f(x)) = x \), then \( g(x) \) is the inverse of \( f(x) \). Given \( g'(x) f'(x) = 1 \), it follows that \( g'(f(x)) = \frac{1}{f'(x)} \).
Related content
Matrices and Determinants_mathematics |
If and then is the inverse of
If \( f(g(x)) = x \) and \( g(f(x)) = x \), then \( g(x) \) is the inverse of \( f(x) \). Given \( g'(x) f'(x) = 1 \), it follows that \( g'(f(x)) = \frac{1}{f'(x)} \).
Matrices and Determinants_mathematics |