Let A, B and C be finite sets such that A∩B∩C=ϕ and each one of the sets AΔB,BΔC and CΔA has 100 elements. The number of elements in A∪B∪C is 

Let A, B and C be finite sets such that ABC=ϕ and each one of the sets AΔB,BΔC and CΔA has 100 elements. The number of elements in ABC is 

  1. A

    250

  2. B

    200

  3. C

    150

  4. D

    300

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let n(X ) denote the number of elements in X. 
    Then

    n(ABC)=n(A)+n(B)+n(C)n(AB)n(BC)n(CA)+n(ABC) =Σn(A)Σn(AB) (sinceABC=ϕ)AΔB=(AB)(BA)=(AB)(AB)

    Therefore,

    n(AΔB)=n(AB)n(AB) =n(A)+n(B)2n(AB)and 300=Σn(AΔB)=Σ[n(A)+n(B)2n(AB)] =2[Σn(A)Σn(AB)]

    Therefore, n(ABC)=Σn(A)Σn(AB)=3002=150

    Chat on WhatsApp Call Infinity Learn