Let Q be the set of all rational numbers and R be the relation defined as R={(x,y):1+xy>0,x,y∈Q} Then relation R is

Let Q be the set of all rational numbers and R be the relation defined as R={(x,y):1+xy>0,x,yQ} Then relation R is

  1. A

    symmetric and transitive 

  2. B

    reflexive and transitive 

  3. C

    an equivalence relation

  4. D

    reflexive and symmetric 

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Since 1+x2>0 for all xQ, so R is reflexive. 

     If (x,y)R1+xy>0 1+yx>0(y,x)R 

    Thus R is symmetric.

     Take x=2,y=14,z=1 

    1+xy=112=12>0  so (x,y)R

    1+yz=1+14=54>0  so (y,z)R

    1+xz=12=1  (x,z)R.

     Hence R is not transitive.

    Chat on WhatsApp Call Infinity Learn