The angle between pair of tangents drawn to the ellipse 3×2+2y2=5 from the point (1, 2) is  

The angle between pair of tangents drawn to the ellipse 3x2+2y2=5 from the point (1, 2) is  

  1. A

    tan1(12/5) 

  2. B

    tan1(6/5) 

  3. C

    tan1(12/5)

  4. D

    tan1(8/5)

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    SS11=S12

         3x2+2y253(12)+2(22)5=(3x.1+2y.25)2 9x24y224xy+30x+40y55=0    tanθ=2h2aba+b, a=9,b=4,h=12

    Alt. The ellipse is of the form x2b2+y2a2=1a2>b2 the equation of any tangent to it is 

    x=my+a2m2+b2 It passes through ( 1, 2l  

     (12m)2=563m2+2

     9m224m4=0 

    tanθ=m1m21+m1m2=m1+m224m1m21+m1m2=7205=1255=125 etc. 

    Chat on WhatsApp Call Infinity Learn