MathematicsThe equation of the common tangent to the parabola y=x2 and y=−(x−2)2 is /are

The equation of the common tangent to the parabola y=x2 and y=(x2)2 is /are

  1. A

    y=4(x1)

  2. B

    y=0

  3. C

    y=4(x1)

  4. D

    y=30x50

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Any point on the parabola y=x2  is t, t2.

    Now tangent at t, t2 is

    xx1=12y+y1 tx=12y+t2 2txyt2=0

    If it is a tangent to the parabola, y=(x2)2, then 

        2txt2=(x2)22txt2=x2+4x4x2+2(2t)x+t24=0

    Since it has equal roots, so

        D=0    4(2t)24t24=0    (2t)2t24=0

    t=20

    Hence, the equation of the common tangent is  y=4x4y=0 .

    Chat on WhatsApp Call Infinity Learn