MathematicsTwo candles of equal height but different thickness are lighted. The first burns off in 6 hours and the second in 8 hours. How long, after lighting both, will the first candle be half the height of the second?

Two candles of equal height but different thickness are lighted. The first burns off in 6 hours and the second in 8 hours. How long, after lighting both, will the first candle be half the height of the second?


  1. A
    245
  2. B
    125
  3. C
    365
  4. D
    485 

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Given that, the first candle burns off in 6 hrs, the 16 part of the candle burns in 1 hr. As the second candle burns off in 8 hrs, the 18 part of the candle burns in 1 hr.
    Let L be the length of the candles.
    Considering t as the time taken by the first candle to be half of the length of the second candle.
    Then, the first candle burns Lt6 part in t hrs and the second candle burns Lt8 part in t hrs. Hence, L-Lt6=12L-Lt8
    L1-t6=L21-t8 6 - t6= 8 - t16 6 - t3= 8 - t8  8(6 - t) = 3 (8 - t)  48 -8t = 24 - 3t 5t=24 t=245 Therefore, the time taken by the first candle to be half of the length of the second candle is 245.
    Hence the correct option is 1.
     
    Chat on WhatsApp Call Infinity Learn