A system consists of three masses m1, m2 and m3  connected by a string passing over a pulley P. The mass m1 hangs freely and m2 and m3 are on a rough horizontal table (the coefficient of friction= μ)The pulley is frictionless and of negligible mass. The downward acceleration of mass m1 is  (Assume m1=m2=m3=m 

A system consists of three masses m1, m2 and m3  connected by a string passing over a pulley P. The mass m1 hangs freely and m2 and m3 are on a rough horizontal table (the coefficient of friction= μ)

The pulley is frictionless and of negligible mass. The downward acceleration of mass m1 is 

 (Assume m1=m2=m3=m

 

  1. A

    g(1gμ)9

  2. B

    2gμ3

  3. C

    g(12μ)3

  4. D

    g(12μ)2

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Force of friction on mass m2=μm2g        

    Force of friction on mass     m3=μm3g        

    Let α be common acceleration of the system.

     a=m1gμm2gμm3gm1+m2+m3

     Here, m1=m2=m3=m

     Hence, the downward acceleration of mass m1 is g(12μ)3

     

    Chat on WhatsApp Call Infinity Learn