Solution:
For a differentiable function, define \( D∗f(x) = \lim_{h \to 0} \frac{f^2(x+h) - f^2(x)}{h} \) where \( f^2(x) = (f(x))^2 \).
For example:
- \( D∗f(x) = 2x \) if \( f(x) = x \)
- \( D∗f(x) = 2 \sin(x) \cos(x) \) if \( f(x) = \sin(x) \)
- \( D∗f(x) = 2 e^{2x} \) if \( f(x) = e^x \)
Related content
Matrices and Determinants_mathematics |