If two tangents drawn from a point P to the parabola y2 = 4x are at right angles, then the locus of P is

If two tangents drawn from a point P to the parabola y2 = 4x are at right angles, then the locus of P is

  1. A

     x = 1 

  2. B

    2x- 1 = 0

  3. C

     x =1

  4. D

    2x + 1 = 0

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Equation of a tangent to the parabola is y = mx + 1/m. If it passes through P(h, k), then

     k = mh + 1/m 

    m2hmk+1=0 which gives the slopes of two tangents passing through P. As these are at right angles, product of the slopes = 1 1/h =  1 Locus of P is x = 1 which is the directrix of the parabola.

    Chat on WhatsApp Call Infinity Learn