Let S1,S2,S3…………. and t1,t2,t3…………. are two arithmetic sequences such that S1=t1≠0;S2=2t2 and ∑i=110 Si=∑i=115 ti then, the value of S2−S1t2−t1 is: 

 Let S1,S2,S3. and t1,t2,t3. are two arithmetic sequences such that S1=t10;S2=2t2 and i=110Si=i=115ti then, the value of S2S1t2t1 is: 

  1. A

    83

  2. B

    32

  3. C

    198

  4. D

    2

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

     Let S1,S2,S3. are in A.P. with common difference d and t1,t2,t3 are 

     in A.P with common difference d2

    i=110Si=1022S1+(101)d1i=115ti=1522t1+(151)d2102S1+9d1=152t1+14d222S1+9d1=32t1+14d22S1+9d1=3t1+7d22S1+9d1=3t1+21d2As, S1=t12t1+9d1=3t1+21d29d1=t1+21d2d1=S2S1=2t2t1d2=t2t1

    92t2t1=t1+21t221t118t29t1=21t220t111t1=3t2 Thus, S2S1t2t1=2t2t1t2t1=211311131=2238=198

    Chat on WhatsApp Call Infinity Learn