Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9
Banner 10
AI Mentor
Book Online Demo
Try Test

Class 9 Maths Chapter 12 Heron’s Formula MCQs

By Karan Singh Bisht

|

Updated on 11 Sep 2025, 12:43 IST

Find Class 9 Maths Chapter 12 MCQs on Heron’s Formula online, complete with answers. These questions are designed as per the latest CBSE (2025-2026) syllabus and NCERT guidelines and follow the current Class 9 exam pattern. The MCQs are organized chapter-wise for easy practice, with detailed explanations provided for each question. Explore more chapter-specific Class 9 Maths MCQs at Infinity Learn (IL).

MCQ on Heron’s Formula Class 9 with Answers PDF

Q. The sides of a triangle are 3 cm, 4 cm, and 5 cm. Its area is:

Fill out the form for expert academic guidance
+91
Student
Parent / Guardian
Teacher
submit

a) 6 cm² b) 12 cm² c) 7 cm² d) 5 cm²

Answer: a) 6 cm²

Unlock the full solution & master the concept
Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept

Q. For a triangle with sides 5 cm, 12 cm, and 13 cm, the area is:

a) 30 cm² b) 60 cm² c) 36 cm² d) 50 cm²

Ready to Test Your Skills?
Check Your Performance Today with our Free Mock Tests used by Toppers!
Take Free Test

Answer: b) 30 cm²

Q. Heron’s formula requires which of the following to calculate area?

cta3 image
create your own test
YOUR TOPIC, YOUR DIFFICULTY, YOUR PACE
start learning for free

a) Base and height b) Three sides c) Angles d) Two sides

Answer: b) Three sides

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Q. The semi-perimeter (s) of a triangle with sides 6 cm, 8 cm, 10 cm is:

a) 12 cm b) 10 cm c) 14 cm d) 15 cm

Ready to Test Your Skills?
Check Your Performance Today with our Free Mock Tests used by Toppers!
Take Free Test

Answer: a) 12 cm

Q. The area of a triangle with sides 7 cm, 24 cm, and 25 cm is:

cta3 image
create your own test
YOUR TOPIC, YOUR DIFFICULTY, YOUR PACE
start learning for free

a) 84 cm² b) 60 cm² c) 70 cm² d) 72 cm²

Answer: a) 84 cm²

Q. A triangle with sides 9 cm, 12 cm, 15 cm is:

a) Equilateral b) Right-angled c) Isosceles d) Scalene

Answer: b) Right-angled

MCQ Questions for Class 9 Subject-wise
MCQ Questions for Class 9 MathsMCQ Questions for Class 9 Science
MCQ Questions for Class 9 Social ScienceMCQ Questions for Class 9 Hindi

Q. Area of triangle with sides 13 cm, 14 cm, 15 cm using Heron’s formula:

a) 84 cm² b) 84.5 cm² c) 84.9 cm² d) 85 cm²

Answer: a) 84 cm²

Q. If sides of a triangle are equal, Heron’s formula reduces to:

a) √3/4 × a² b) ½ × base × height c) ab × sinC/2 d) None

Answer: a) √3/4 × a²

Q. A triangle has sides 8 cm, 15 cm, and 17 cm. Its area is:

a) 60 cm² b) 80 cm² c) 100 cm² d) 120 cm²

Answer: b) 60 cm²

Q. If a triangle has sides 5 cm, 5 cm, 6 cm, the semi-perimeter (s) is:

a) 7 cm b) 8 cm c) 6 cm d) 10 cm

Answer: b) 8 cm

Q. The area of an equilateral triangle of side 10 cm is:

a) 50√3 cm² b) 25√3 cm² c) 100 cm² d) 30√3 cm²

Answer: a) 25√3 cm²

Q. A triangle has sides 6 cm, 8 cm, 10 cm. Its area using Heron’s formula:

a) 20 cm² b) 24 cm² c) 25 cm² d) 30 cm²

Answer: b) 24 cm²

Q. A triangle has sides 7 cm, 7 cm, 10 cm. Area is:

a) 24 cm² b) 20 cm² c) 21 cm² d) 18 cm²

Answer: c) 21 cm²

Q. If a triangle has sides 5 cm, 12 cm, 13 cm, it is:

a) Equilateral b) Isosceles c) Right-angled d) Scalene

Answer: c) Right-angled

Q. A triangle has area 30 cm² and sides 5 cm, 12 cm, 13 cm. The semi-perimeter is:

a) 15 cm b) 10 cm c) 12 cm d) 14 cm

Answer: a) 15 cm

Heron's Formula Class 9 MCQ PDF with Answers

Q. A triangle with sides 9 cm, 9 cm, 10 cm. Area is:

a) 40 cm² b) 39 cm² c) 41 cm² d) 42 cm²

Answer: b) 39 cm²

Q. Heron’s formula: Area = √[s(s−a)(s−b)(s−c)]. What is “s”?

a) Semi-perimeter b) Sum of sides c) Area d) Base

Answer: a) Semi-perimeter

Q. A triangle has sides 7 cm, 24 cm, 25 cm. Semi-perimeter = ?

a) 28 cm b) 27 cm c) 30 cm d) 26 cm

Answer: b) 28 cm

Q. If sides of a triangle are 8, 15, 17 cm, area = ?

a) 60 cm² b) 64 cm² c) 68 cm² d) 65 cm²

Answer: a) 60 cm²

Q. A triangle has sides 10, 10, 12 cm. Area = ?

a) 48 cm² b) 49 cm² c) 50 cm² d) 51 cm²

Answer: a) 48 cm²

Q. Which triangle type can have area calculated by Heron’s formula?

a) All types b) Only right-angled c) Only equilateral d) Only isosceles

Answer: a) All types

Q. A triangle with sides 13, 14, 15 cm. Semi-perimeter = ?

a) 21 cm b) 22 cm c) 23 cm d) 24 cm

Answer: b) 21 cm

Q. Triangle sides 7, 9, 12 cm. Area = ?

a) 28 cm² b) 30 cm² c) 31 cm² d) 32 cm²

Answer: b) 30 cm²

Q. A triangle with sides 3, 4, 5 cm. Which type is it?

a) Equilateral b) Right-angled c) Isosceles d) Scalene

Answer: b) Right-angled

Q. Triangle with sides 6, 10, 12 cm. Area = ?

a) 29.7 cm² b) 28.98 cm² c) 30 cm² d) 32 cm²

Answer: b) 29.7 cm²

Q. Sides 9, 12, 15 cm. Area = ?

a) 54 cm² b) 56 cm² c) 60 cm² d) 62 cm²

Answer: c) 54 cm²

Q. Triangle with sides 8, 15, 17 cm. Type?

a) Right-angled b) Isosceles c) Equilateral d) Scalene

Answer: a) Right-angled

Q. Heron’s formula can be used for a triangle with sides:

a) 1, 2, 3 b) 5, 5, 5 c) 3, 4, 5 d) All of these

Answer: d) All of these

Q. Area of triangle with sides 7, 24, 25 = ?

a) 84 cm² b) 80 cm² c) 88 cm² d) 86 cm²

Answer: a) 84 cm²

More Resources for Class 9 NCERT

a) 15 cm b) 16 cm c) 18 cm d) 17 cm

Answer: b) 16 cm

Q. Triangle sides 9, 9, 12. Area = ?

a) 40 cm² b) 41 cm² c) 42 cm² d) 43 cm²

Answer: a) 40 cm²

Q. Sides 8, 15, 17. Semi-perimeter = ?

a) 20 cm b) 25 cm c) 30 cm d) 25 cm

Answer: a) 20 cm

Q. Triangle with sides 7, 24, 25. Area = ?

a) 60 cm² b) 72 cm² c) 84 cm² d) 90 cm²

Answer: c) 84 cm²

Q. Area of equilateral triangle with side 6 cm = ?

a) 9√3 cm² b) 12√3 cm² c) 18 cm² d) 15 cm²

Answer: a) 9√3 cm²

Q. Triangle sides 13, 14, 15. Area = ?

a) 84 cm² b) 85 cm² c) 86 cm² d) 87 cm²

Answer: a) 84 cm²

Q. Triangle sides 21, 20, 29. Area = ?

a) 210 cm² b) 200 cm² c) 220 cm² d) 230 cm²

Answer: a) 210 cm²

Q. Triangle sides 5, 6, 7. Semi-perimeter = ?

a) 9 cm b) 10 cm c) 11 cm d) 12 cm

Answer: b) 9 cm

Q. Area of triangle with sides 9, 10, 17?

a) 36 cm² b) 40 cm² c) 42 cm² d) 44 cm²

Answer: b) 36 cm²

Q. Triangle sides 15, 15, 24. Area?

a) 108 cm² b) 110 cm² c) 112 cm² d) 114 cm²

Answer: a) 108 cm²

Q. Triangle sides 8, 15, 17. Semi-perimeter = ?

a) 20 cm b) 21 cm c) 22 cm d) 23 cm

Answer: a) 20 cm

Q. Heron’s formula is applicable for which type of triangle?

a) Acute b) Obtuse c) Right d) All types

Answer: d) All types

Q. Area of triangle with sides 6, 8, 10 = ?

a) 24 cm² b) 25 cm² c) 26 cm² d) 28 cm²

Answer: a) 24 cm²

Q. Triangle sides 12, 13, 14. Area = ?

a) 72 cm² b) 78 cm² c) 84 cm² d) 80 cm²

Answer: c) 84 cm²

Q. Triangle sides 7, 15, 20. Area = ?

a) 48 cm² b) 49 cm² c) 50 cm² d) 51 cm²

Answer: a) 48 cm²

Q. Triangle sides 9, 12, 15. Area = ?

a) 54 cm² b) 60 cm² c) 63 cm² d) 65 cm²

Answer: b) 54 cm²

Q. Sides 5, 5, 8. Area = ?

a) 12 cm² b) 10 cm² c) 8 cm² d) 15 cm²

Answer: b) 12 cm²

Q. Area of triangle with sides 11, 12, 13?

a) 60 cm² b) 66 cm² c) 65 cm² d) 70 cm²

Answer: b) 66 cm²

Q. Triangle sides 9, 9, 10. Area = ?

a) 36 cm² b) 37 cm² c) 38 cm² d) 39 cm²

Answer: d) 39 cm²

Q. Triangle sides 14, 15, 16. Area = ?

a) 84 cm² b) 84.9 cm² c) 85 cm² d) 86 cm²

Answer: b) 84.9 cm²

course

No courses found

FAQs on Class 9 Maths Chapter 12 Heron’s Formula MCQs

Where can I download MCQs for Chapter 12 Heron’s Formula?

You can download chapter-wise MCQs with answers directly from Infinity Learn. Their resources are aligned with the latest NCERT syllabus and provide clear step-by-step solutions.

Where can I find practice MCQs online?

Infinity Learn offers interactive online quizzes and chapter-wise MCQs for Heron’s Formula. These exercises help you practice, test your knowledge, and instantly check your answers.

How should I prepare MCQs for Heron’s Formula effectively?

Start by understanding the Heron’s Formula concept and solving example problems. Then, practice the MCQs available on Infinity Learn regularly to improve speed, accuracy, and confidence.

How many MCQs should I practice to be exam-ready?

It aim to solve 30–50 MCQs from Infinity Learn for thorough preparation. Include easy, moderate, and tricky questions to cover all possible patterns in your exams. Daily practice is more effective than occasional long sessions.