MathsExponential Growth – Explanation, Graph, Equation, Decay, Solved Example, and FAQs

Exponential Growth – Explanation, Graph, Equation, Decay, Solved Example, and FAQs

What is Exponential Growth?

In mathematics and physics, exponential growth is a type of growth in which the proportional rate of increase is proportional to the current size of the object. In other words, the size of the object is multiplied by the growth rate each time the object is measured. Exponential Growth – Explanation Graph Equation Decay .

    Fill Out the Form for Expert Academic Guidance!



    +91

    Verify OTP Code (required)


    I agree to the terms and conditions and privacy policy.

    For example, if an object is measured to be 2 centimeters long, and the growth rate is 1 centimeter per day, then the object will be 4 centimeters long after one day, 8 centimeters long after two days, and so on.

    JEE Exam 2025, JEE Main 2025 Application Form (OUT)

    \[N=N_0e^{rt}\]

    where

    N is the population or quantity at time t

    N 0 is the initial population or quantity

    r is the growth rate

    t is the time in years

    Exponential Decay

    In exponential decay, the decay rate is proportional to the current amount of the substance.

    $\frac{dN}{dt} = k N$

    Where

    $dN$ = the change in the amount of the substance over time, in units of the substance

    $dt$ = the change in time, in units of time

    $k$ = the decay rate, in units of the substance per unit time

    Exponential Decay Formula

    The exponential decay formula is a mathematical equation that describes the rate at which a quantity decays over time. The equation is:

    • The quantity “N” represents the amount of the substance at time “t” and “k” is the decay constant.
    • The decay constant is a measure of how quickly the substance decays and is typically expressed in units of inverse time (e.g. seconds-1).
    Chat on WhatsApp Call Infinity Learn