MCQ with Answers – Class 10 Maths Introduction to Trigonometry

# MCQ with Answers – Class 10 Maths Introduction to Trigonometry

## Maths Multiple Choice Questions with Answers

Register to Get Free Mock Test and Study Material

+91

Verify OTP Code (required)

### Chapter 8 Introduction to Trigonometry

1. The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is
(a) 1
(b) -1
(c) 0
(d) $$\frac{1}{\sqrt{2}}$$

2. If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to
(a) √3
(b) $$\frac{1}{2}$$
(c) $$\frac{1}{\sqrt{2}}$$
(d) 1

3. If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y

4. sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°

5. If A, B and C are interior angles of a ΔABC then $$\cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)$$ is equal to

6. If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to
(a) 0
(b) $$\frac{1}{\sqrt{3}}$$
(c) 1
(d) √3

7. If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = …
(a) –$$\frac{1}{2}$$
(b) $$\frac{1}{2}$$
(c) -2
(d) 2

8. If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ..
(a) -1
(b) 0
(c) 1
(d) 2

9. 5 tan² A – 5 sec² A + 1 is equal to
(a) 6
(6) -5
(c) 1
(d) -4

10. If sec A + tan A = x, then sec A =

11. If sec A + tan A = x, then tan A =

13. If x = a cos 0 and y = b sin 0, then b2x2 + a2y2 =
(a) ab
(b) b² + a²
(c) a²b²
(d) a4b4

14. What is the maximum value of $$\frac{1}{\csc A}$$?
(a) 0
(b) 1
(c) $$\frac{1}{2}$$
(d) 2

15. What is the minimum value of sin A, 0 ≤ A ≤ 90°
(a) -1
(b) 0
(c) 1
(d) $$\frac{1}{2}$$

16. What is the minimum value of cos θ, 0 ≤ θ ≤ 90°
(a) -1
(b) 0
(c) 1
(d) $$\frac{1}{2}$$

17. Given that sin θ = $$\frac{a}{b}$$ , then tan θ =

18. If cos 9A = sin A and 9A < 90°, then the value of tan 5A is
(a) 0
(b) 1
(c) $$\frac{1}{\sqrt{3}}$$
(d) √3

19. If in ΔABC, ∠C = 90°, then sin (A + B) =
(a) 0
(b) 1/2
(c) $$\frac{1}{\sqrt{2}}$$
(d) 1

20. If sin A – cos A = 0, then the value of sin4 A + cos4 A is
(a) 2
(b) 1
(c) $$\frac{3}{4}$$
(d) $$\frac{1}{2}$$