BlogCBSEExtra Questions for Class 9 Maths with Solutions Chapter Wise

Extra Questions for Class 9 Maths with Solutions Chapter Wise

Extra Questions for Class 9 Maths will help you with practice. We have selectively graded these extra questions for more practice. We request Students to solve these questions without going through solutions. If you face any difficulty in solving these Extra Questions, Please refer solutions.

    Fill Out the Form for Expert Academic Guidance!



    +91

    Verify OTP Code (required)


    I agree to the terms and conditions and privacy policy.

    Extra Questions for Class 9 Maths with Solutions Chapter Wise

    Also Check: NCERT Solutions for Class 9 Science

    Extra Questions for Class 9 Maths with Solutions

    Here is the list of Extra Questions for Class 9 Maths with Answers based on latest NCERT syllabus prescribed by CBSE.

    Number Systems Class 9 Extra Questions Very Short Answer Type

    Question 1.
    Simplify: (√5 + √2)2.
    Solution:
    Here, (√5 + √22 = (√52 + 2√5√2 + (√2)2
    = 5 + 2√10 + 2 = 7 + 2√10

    Question 3.
    Identify a rational number among the following numbers :
    2 + √2, 2√2, 0 and π
    Solution:
    O is a rational number.

    Also Check: NCERT Solutions for Class 9 Maths

    Question 4.
    Express 1.8181… in the form pq where p and q are integers and q ≠ 0.
    Solution:
    Let x =1.8181… …(i)
    100x = 181.8181… …(ii) [multiplying eqn. (i) by 100] 99x = 180 [subtracting (i) from (ii)] x = 18099
    Hence, 1.8181… = 18099 = 2011

    Also Check: NCERT Solutions for Class 9 Social Science

    Question 5.
    Simplify : √45 – 3√20 + 4√5
    Solution:
    √45 – 3√20 + 4√5 = 3√5 – 6√5 + 4√5 = √5.


    class 9 cbse foundation course

    The Class 9 CBSE Foundation Course is designed to be the most competitive educational program in India, providing an exceptional online learning experience. Our focused batch encompasses all crucial subjects, ensuring comprehensive preparation for students.

    Number Systems Extra Questions for Class 9 Maths Type 1

    Question 1.
    Evaluate : (√5 + √22 + (√8 – √5)2
    Solution:
    (√5 + √2)2 + (√8 – √52 = 5 + 2 + 2√10 + 8 + 5 – 2√40
    = 20 + 2√10 – 4√10 = 20 – 2√10

    Question 2.

    Express 23.43¯¯¯¯¯ in pq form, where p, q are integers and q ≠ 0.
    Solution:
    Let x = 23.43¯¯¯¯¯
    or x = 23.4343… ….(i)
    100x = 2343.4343… …(ii) [Multiplying eqn. (i) by 100] 99x = 2320 [Subtracting (i) from (ii)
    ⇒ x = 2320

    Also Check: NCERT Solutions for Class 9 English

    Question 3.

    Let ‘a’ be a non-zero rational number and ‘b’ be an irrational number. Is ‘ab’ necessarily an irrational ? Justify your answer with example.
    Solution:
    Yes, ‘ab’ is necessarily an irrational.
    For example, let a = 2 (a rational number) and b = √2 (an irrational number)
    If possible let ab = 2√2 is a rational number.
    Now, aba = 22√2 = √2 is a rational number.
    [∵ The quotient of two non-zero rational number is a rational] But this contradicts the fact that √2 is an irrational number.
    Thus, our supposition is wrong.
    Hence, ab is an irrational number.

    Other study resources for class 9 available at IL

    CBSE Syllabus for Class 9
    CBSE Class 9 Science Syllabus CBSE Class 9 Information Technology Syllabus
    CBSE Class 9 Social Science Syllabus CBSE Class 9 Maths Syllabus
    CBSE Class 9 Hindi Syllabus CBSE Class 9 English Syllabus
    CBSE Class 9 AI Syllabus

    Number Systems Class 9 Extra Questions Short Answer Type 2

    Solve these Extra Questions for Class 9 Maths with Solutions and check the level of your performance.

    Question 1.
    Express 1.32 + 0.35 as a fraction in the simplest form.
    Solution:
    Let . x = 1.32 = 1.3222…..(i)

    Multiplying eq. (i) by 10, we have
    10x = 13.222…
    Again, multiplying eq. (i) by 100, we have
    100x = 132.222… …(iii)
    Subtracting eq. (ii) from (iii), we have
    100x – 10x = (132.222…) – (13.222…)
    90x = 119
    ⇒ x = 11990
    Again, y = 0.35 = 0.353535……
    Multiply (iv) by 100, we have …(iv)
    100y = 35.353535… (v)
    Subtracting (iv) from (u), we have
    100y – y = (35.353535…) – (0.353535…)
    99y = 35
    y = 3599

     

    Question 8.
    Find ‘x’, if 2x-7 × 5x-4 = 1250.
    Solution:
    We have 2x-7 × 5x-4 = 1250
    ⇒ 2x-7 × 5x-4 = 2 5 × 5 × 5 × 5
    ⇒ 2x-7 × 5x-4 = 21 × 54
    Equating the powers of 2 and 5 from both sides, we have
    ⇒ x – 7 = 1 and x – 4 = 4
    ⇒ x = 8 and x = 8
    Hence, x = 8 is the required value.

    Related Links:

    Number Systems Class 9 Extra Questions Value Based (VBQs)

    Question 1. Sudhir and Ashok participated in a long jump competition along a straight line marked as a number line. Both start the jumps one by one but in opposite directions. From ‘O’ Ashok jumps one unit towards the positive side while Sudhir jumps double in units as Ashok jumps, along negative side. After jumping 4 jumps each, at which point Ashok and Sudhir reached. What is the distance between their final positions ? Ashok argue that he is the winner since Sudhir is at negative side. Who do you think is winner and why? What is the value of the competition ?

    Solution:

    After jumping four jumps each, Ashok reached at 4 in positive direction and Sudhir reached at -8 i.e., in negative direction. Distance between their final positions is 12 units. Here, distance covered by Sudhir is 8 units and distance covered by Ashok is 4 units. Thus, Sudhir is the winner. Competition inculcate spirit of performance.

    Polynomials Class 9 Extra Questions Very Short Answer Type

    Question 1.
    Factorise : 125x3 – 64y3
    Solution:
    125x3– 6443 = (5x)3 – (4y)3
    By using a3 – b3 = (a – b) (a2 + ab + b2), we obtain
    125x3– 64y3 = (5x – 4y) (25x2 + 20xy + 16y2)

    Question 2.
    Find the value of (x + y)2 + (x – y)2.
    Solution:
    (x + y)2 + (x – y)2 = x2 + y2 + 2xy + x2 + y2 – 2xy
    = 2x2 + 2y2 = 21x2 + y2)

    It is a free online tool that shows the division of two polynomials with Polynomial long division method.

    Question 3.
    If p(x)= x2 – 2√2x+1, then find the value of p(2√2)
    Solution:
    Put x = 2√2 in p(x), we obtain
    p(2√2) = (2√2)2 – 2√2(2√2) + 1 = (2√2)2 – (2√2)2 + 1 = 1

    Question 4.
    Find the value of m, if x + 4 is a factor of the polynomial x2 + 3x + m.
    Solution:
    Let p(x) = x2 + 3x + m
    Since (x + 4) or (x – (-4)} is a factor of p(x).
    ∴ p(-4) = 0
    ⇒ (-4)2 + 3(-4) + m = 0
    ⇒ 16 – 12 + m = 0
    ⇒ m = -4

    Question 5.
    Find the common factor in the quadratic polynomials x2 + 8x + 15 and x2 + 3x – 10.
    Solution:
    x2 + 8x + 15 = x2 + 5x + 3x + 15 = (x + 3) (x + 5)
    x2 + 3x – 10 = x2 + 5x – 2x – 10 = (x – 2) (x + 5)
    Clearly, the common factor is x + 5.

    Polynomials Class 9 Extra Questions Short Answer Type 1

    Question 1.
    Expand :
    (i) (y – √3)2
    (ii) (x – 2y – 3z)2
    Solution: (i)
    (y – √3)2 = y2 -2 × y × √3 + (√3)2 = y2 – 2√3 y + 3 (x – 2y – 3z)2
    = x2 + 1 – 2y)2 + (-3z)2 + 2 × x × (-2y) + 2 × (-2y) × (-3z) + 2 × (-3z) × x
    = x2 + 4y2 + 9z2 – 4xy + 12yz – 6zx

    Question 3.
    Show that p – 1 is a factor of p10 + p8 + p6 – p4 – p2 – 1.
    Solution:
    Let f(p) = p10 + p8 + p6 – p4 – p2 – 1
    Put p = 1, we obtain
    f(1) = 110 + 18 + 16 – 14 – 12 – 1
    = 1 + 1 + 1 – 1 – 1 – 1 = 0
    Hence, p – 1 is a factor of p10 + p8 + p6 – p4 – p2 – 1.

    Question 4.
    If 3x + 2y = 12 and xy = 6, find the value of 27x3 + 8y3
    Solution:
    We have 3x + 2y = 12
    On cubing both sides, we have
    ⇒ (3x + 2y)3 = 123
    ⇒ (3x)3 +(2y)3 + 3 × 3x × 2y(3x + 2y) = √728
    ⇒ 27x3+ 8y3 + 18xy(3x + 2y) = √728
    ⇒ 27x3+ 8y3 + 18 × 6 × 12 = √728
    ⇒ 27x3+ 8y3 + 1296 = √728
    ⇒ 27x3+ 8y3 = √728 – 1296
    ⇒ 27x3+ 8y3 = 432

    Question 5. Factorise : 4x2 + 9y2 + 16z22 + 12xy – 24 yz – 16xz.

    Solution: 4x2 + 9y2 + 16z22 + 12xy – 24yz – 16xz
    = (2x)2 + (3y)2 + (-4z)2 + 2(2x)(3y) + 2(3y)(= 42) + 2(- 42)(2x)
    By using a2 + b2 + 2ab + 2bc + 2ca = (a + b + c)2, we obtain
    = (2x + 3y – 4z)2 = (2x + 3y – 4z) (2x + 3y – 4z)

    Question 6. Factorise : 1 – 2ab – (a2 + b2).

    Solution:
    1 – 2ab – (a2 + b2) = 1 – (a2 + b2 + 2ab)
    = 12 – (a + b)2
    = (1 + a + b) (1 – a – b) [∵ x2 – y2 = (x + y)(x – y)]

    Polynomials Class 9 Extra Questions Short Answer Type 2

    Question .
    Factorise 64a3 – 27b3 – 144a2b + 108ab2.
    Solution:
    64a2 – 27b2 – 144a2b + 108ab2
    = (4a)3 – (3b)3 – 36ab(4a – 3b)
    = (40)2 – (3b)3 – 3 × 4a × 3b (4a – 3b)
    = (4a – 3b)3 [∵ (x – y)3 = x3 – y3 – 3xy(x – y)] = (40 – 3b) (4a – 3b) (4a – 3b)

    Question.
    What are the possible expressions for the dimensions of a cuboid whose volume is given below ?
    Volume = 12ky2 + 8ky – 20k.
    Solution:
    We have, volume = 12ky2 + 8ky – 20k
    = 4k(3y2 + 2y – 5) = 4k(3y2 + 5y – 3y – 5)
    = 4k[y(3y + 5) – 1(3y + 5)] = 4k(3y + 5) (y – 1)
    ∴Possible expressions for the dimensions of cuboid are 4k units, (3y + 5) units and (y – 1) units.

    Question.
    If p(x) = x3 + 3x2 – 2x + 4, then find the value of p(2) + p(-2) – P(0).
    Solution:
    Here, p(x) = x3+ 3x2 – 2x + 4
    Now, p(2) = 23 + 3(2)2 – 2(2) + 4
    = 8 + 12 – 4 + 4 = 20
    p(-2) = (-2)3 + 3(-2)2 – 21 – 2) + 4
    = 8 + 12 + 4 + 4 = 12
    and p(0) = 0 + 0 – 0 + 4 = 4
    ∴ p(2) + p(-2) – p(0) = 20 + 12 – 4 = 28.

    Question.
    If one zero of the polynomial x2 – √3x + 40 is 5, which is the other zero ?
    Solution:
    Let
    p(x) = x2 – √3x + 40
    = x2 – 5x – 8x + 40 = x(x – 5) – 8(x – 5) = (x – 5) (x – 8)
    Now, for zeroes of given polynomial, put p(x) = 0
    ∴ (x – 5) (x – 8) = 0
    x = 5 or x = 8
    ⇒ Hence, other zero is 8.

    Polynomials Class 9 Extra Questions Long Answer Type

    Question 1.
    Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b) (b + c) (c + a).
    Solution:
    L.H.S. = (a + b + c)3 – a3 – b3 – c3
    = {(a + b + c)3 – 3} – {b3 + c3}
    = (a + b + c – a) {(a + b + c)2 + a2 + a(a + b + c)} – (b + c) (b2 + c2 – bc)
    = (b + c) {a2 + b2 + 2 + 2ab + 2bc + 2ca + a2 + a2 + ab + ac – b2 – a2 + bc)
    = (b + c) (3a2 + 3ab + 3bc + 3ca}
    = 3(b + c) {a2 + ab + bc + ca}
    = 31b + c) {{a2 + ca) + (ab + bc)}
    = 3(b + c) {a(a + c) + b(a + c)}
    = 3(b + c)(a + c) (a + b)
    = 3(a + b)(b + c) (c + a) = R.H.S.

    Question 2.
    Factorise : (m + 2n)2 x2 – 22x (m + 2n) + 72.
    Solution:
    Let m + 2n = a
    ∴ (m + 2n)2 x2 – 22x (m + 2n) + 72 = a2x2 – 22ax + 72
    = a2x2 – 18ax – 4ax + 72
    = ax(ax – 18) – 4(ax – 18)
    = (ax – 4) (ax – 18)
    = {(m + 2n)x – 4)} {(m + 2n)x – 18)}
    = (mx + 2nx – 4) (mx + 2nx – 18).

    Question 3.
    If x – 3 is a factor of x2 – 6x + 12, then find the value of k. Also, find the other factor of the – polynomial for this value of k.
    Solution:
    Here, x – 3 is a factor of x2 – kx + 12
    ∴ By factor theorem, putting x = 3, we have remainder 0.
    ⇒ (3)2 – k(3) + 12 = 0
    ⇒ 9 – 3k + 12 = 0
    ⇒ 3k = 21
    ⇒ k = 7
    Now, x2 – 7x + 12 = x2 – 3x – 4x + 12
    = x(x – 3) – 4(x – 3)
    = (x – 3) (x – 4)
    Hence, the value of k is 7 and other factor is x – 4.

    Question 4.
    Find a and b so that the polynomial x3– 10x2 + ax + b is exactly divisible by the polynomials (x – 1) and (x – 2).
    Solution:
    Let p(x) = x3– 10x2 + ax + b
    Since p(x) is exactly divisible by the polynomials (x – 1) and (x – 2).
    ∴ By putting x = 1, we obtain
    (1)3 – 10(1)2 + a(1) + b = 0
    ⇒ a + b = 9
    And by putting x = 2, we obtain
    (2)3 – 10(2)2 + a(2) + b = 0
    8 – 40 + 2a + b = 0
    ⇒ 2a + b = 32
    Subtracting (i) from (ii), we have
    a = 23
    From (i), we have 23 + b = 9 = b = -14
    Hence, the values of a and b are a = 23 and b = -14

    Question 5.
    Factorise : x2 – 6x2 + 11x – 6.
    Solution:
    Let p(x) = x2 – 6x2 + 11x – 6
    Here, constant term of p(x) is -6 and factors of -6 are ± 1, ± 2, ± 3 and ± 6
    By putting x = 1, we have
    p(1) = (1)3 – 6(1)2 + 11(1) – 6 = 1 – 6 + 11 -6 = 0
    ∴ (x – 1) is a factor of p(x)
    By putting x = 2, we have
    p(2) = (2)3 – 6(2)2 + 11(2) – 6 = 8 – 24 + 22 – 6 = 0
    ∴ (x – 2) is a factor of p(x)
    By putting x = 3, we have
    p(3) = (3)3 – 6(3)2 + 11(3) – 6 = 27 – 54 + 33 – 6 = 0
    ∴ (x – 3) is a factor of p(x) Since p(x) is a polynomial of degree 3, so it cannot have more than three linear factors.
    ∴ x3 – 6x2 + 11x – 6 = k (x – 1) (x – 2) (x – 3)
    By putting x = 0, we obtain
    0 – 0 + 0 – 6 = k (-1) (-2) (3)
    -6 = -6k
    k = 1
    Hence, x3 – 6x2 + 11x – 6 = (x – 1) (x – 2)(x – 3).

    Question.
    Factorise : 6x2 – 5x2 – √3x + 12

    Solution:
    Let p(x) = 6x3– 5x2 – √3x + 12
    Here, constant term of p(x) is 12 and factors of 12 are ± 1, ± 2, ± 3, ± 4, ± 6, ± 12.
    By putting x = 1, we have

    Also check: NCERT Solutions Class 9 Maths Chapter 12 – Heron’s Formula

    Polynomials Class 9 Extra Questions HOTS

    Question.
    If x = 2 – √3, y = √3 – √7 and 2 = √7 – √4, find the value of x’ + 43 + 2?.
    Solution:
    Here, x + y + z = 2 – √3+ √3 – √7+√7 – 2 = 0
    x3+ √3 + x3= 3(x)(y)(z)
    = 3(2 – √3)(√3 – √7)(√7 – 2)
    = 3(2√3 – 2√7 – 3 + √21)(√7 – 2)
    = 3(2√21 – 14 – 3√7 + 7√3 – 4√3 + 4√7 + 6 – 2√21)
    = 3(3√3 + √7 – 8)

    Question.
    If (x – a) is a factor of the polynomials x2 + px – q and x2 + rx – t, then prove that a = t−qr−p
    Solution:
    Let f(x) = x + px -q and g(x) = x2 + x – t
    Since x-a is factor of both f(x) and g(x)
    ⇒ f(a) = g(a) = 0
    Now, here f(a) = a2 + pa – q and
    g(a) = a2 + ra- t
    ⇒ a2 + pa – q = a + ra – t (considering f(a) = g(a)] ⇒ pa – q = ra – t
    ⇒ ra – pa = t – q
    ⇒ a(r – p) = t – q
    a = t−qr−p

    Polynomials Class 9 Extra Questions Value Based (VBQs)

    Question 1.
    If a teacher divides a material of volume 27x3 + 54x2 + 36x + 8 cubic units among three students. Is it possible to find the quantity of material ? Can you name the shape of the figure teacher obtained ? Which value is depicted by the teacher ?

    Solution:We know that, √olume = Length × Breadth × Height

    Now, 27x3+ 54x2 + 36x + 8

    = (3x)3 + 3(3x)2(2) + 3(3x)(2)2 + (2)3

    = (3x + 2)2 = (3x + 2) (3x + 2) (3x + 2)

    Thus, volume = (3x + 2) (3x + 2) (3x + 2)

    Yes, it is possible to find the quantity of material. (3x + 2) units..

    Apply knowledge and use of example for clarity of subject, student friendly.

    Chat on WhatsApp Call Infinity Learn