MathematicsA chord of a circle of radius 14 cm subtends an angle of 60 °   at the centre. Find the area of the corresponding minor segment.  Use π= 22 7  and  3 =1.73  

A chord of a circle of radius 14 cm subtends an angle of 60 °   at the centre. Find the area of the corresponding minor segment.


 Use π= 22 7  and  3 =1.73  


  1. A
    17.89 cm2
  2. B
    17.29 cm2
  3. C
    17.09 cm2
  4. D
    17 cm2 

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Given that r=14 cm, θ=60.
    To find the area of the minor segment, use the following formula;
    Area of the triangle =12ab sin C  The area of the sector subtending an angle θ   at the centre =πr2 θ360.
    Substitute a=b=14 cm, C=60and 12ab sin C to find the area of the triangle.
    12×14×14×32
    =7×14×1.732
    =84.77 cm2                                  Now subtract the area of the triangle from the area of the minor sector to find the area of the minor segment.
    Area of minor segment = π (142) (60360)-84.77
    Area of minor segment =227×14×14×16-84.77
    Area of minor segment =102.67-84.77
    Area of minor segment =17.89 cm2                                                                                              Hence, the area of minor segment is 17.89 cm2.
    Therefore, option 1 is correct.
     
    Chat on WhatsApp Call Infinity Learn