Solution:
Given the parametric equations \( x = f(t) = a \ln(bt) \) and \( y = g(t) = b - \ln(at) \), where \( a, b > 0 \) and \( a \neq 1, b \neq 1 \), \( t \in \mathbb{R} \):
1. Find the expression for \( t \) from \( x \):
\( x = a \ln(bt) \)
Solve for \( t \):
\( t = \frac{e^{x/a}}{b} \)
2. Substitute \( t \) in the expression for \( y \):
\( y = b - \ln(at) \)
Substitute \( t = \frac{e^{x/a}}{b} \):
\( y = b - \ln \left( a \cdot \frac{e^{x/a}}{b} \right) \)
\( y = b - \ln(a) - \ln \left( \frac{e^{x/a}}{b} \right) \)
\( y = b - \ln(a) - \left( \frac{x}{a} - \ln(b) \right) \)
\( y = b - \ln(a) - \frac{x}{a} + \ln(b) \)
\( y = b + \ln(b) - \ln(a) - \frac{x}{a} \)
Therefore, the curve can be expressed as:
\( y = b + \ln(b) - \ln(a) - \frac{x}{a} \)
Related content
Matrices and Determinants_mathematics |