MathematicsIn Fig. O is the center of the circle, ∠BCO = 30°. What is the value of  x and y.

In Fig. O is the center of the circle, BCO = 30°. What is the value of  x and y.


  1. A
    x= 30 ° ,y= 15 °  
  2. B
    x= 30 ° ,y= 35 °  
  3. C
    x= 10 ° ,y= 15 °  
  4. D
    x= 15 ° ,y= 15 °   

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Given that, BA, BD, BC are chords of the circle with center O and BCO= 30 °  
    Joining AC and BO:
     Since we know the angle subtended by an arc at the center of circle will be double the angle subtended by it at any other point on the left part of the circle,
    So, 2ABD=AOD  .
    From given figure AOD= 90 °  .
    So, 2ABD=AOD  .
    2ABD= 90 °   ABD= 45 °  
    Considering triangle OEC,
    Using the property sum of angles in a triangle is 180 °  .
    So, COE+OEC+OCE= 180 °  .
     Using figure OEC= 90 ° ,OCE= 30 °  .
    COE+OEC+OCE= 180 °  
    COE+ 90 ° + 30 ° = 180 °  
    COE+ 120 ° = 180 °  
    COE= 180 ° 120 °   COE= 60 °   As DOC=DOECOE  .
    DOC= 90 ° 60 °   DOC= 30 °  
    Since the angle subtended by an arc at the center is two times the angle subtended by it at any point on the left part of the circle, so, DBC=y= 1 2 DOC  .
    y= 1 2 30 °   y= 15 °   Also, ABE=y+ 45 °   ABE= 15 ° + 45 °     ABE= 60 °  
    Considering triangle ABE,
    We know that the sum of angles in a triangle is 180 °  .
    BAE+ABE+AEB= 180 °   x+ 60 ° + 90 ° = 180 °   x= 180 ° 150 °   x= 30 °   Therefore, option 1 is correct.
     
    Chat on WhatsApp Call Infinity Learn