ArticlesMath ArticlesCo-Prime Numbers

Co-Prime Numbers

Introduction to Co Prime Number

Co-prime numbers are pairs of numbers that do not have any common factor other than 1. There should be a minimum of two numbers to form a set of co-prime numbers. Such numbers have only 1 as their highest common factor, for example, (4 and 7), (5, 7, 9) are co-prime numbers. It is to be noted that co-prime numbers need not be prime numbers always. Two composite numbers like 4 and 9 also form a pair of co-primes.

    Fill Out the Form for Expert Academic Guidance!



    +91

    Verify OTP Code (required)


    I agree to the terms and conditions and privacy policy.

    What are Co-prime Numbers?

    If the only common factor of two numbers a and b is 1, then a and b are co-prime numbers. In this case, (a, b) is said to be a co-prime pair. Co-prime numbers are also referred to as relatively prime numbers.

    Co-prime Number Definition

    The co-prime number definition tells us that if the Greatest Common Factor (GCF) of any two numbers is 1, then they are said to be co-prime.

    Co-prime Number List

    Given below is the list of a few co-primes for your reference.

    Pairs of Co-prime Numbers
    (2,15)
    (3,8)
    (4,9)
    (5,6)
    (11,14)
    (15,19)

    How to Find Co-prime Numbers?

    Find whether any two numbers are co-prime, we first find their Greatest Common Factor (GCF). If their GCF is 1, we can say that they are co-prime.

    Properties of Co-prime Numbers

    Co-prime numbers can be identified easily with the help of some properties that are explained below:

    • The Highest Common Factor (HCF) of two coprime numbers is always 1. For example, 5 and 9 are coprime numbers, there, HCF (5, 9) = 1.
    • The Least Common Multiple (LCM) of two co-primes is always their product. For example, 5 and 9 are co-prime numbers. Hence, LCM (5, 9) = 45.
    • 1 forms a co-prime number pair with every number.
    • Two even numbers cannot be co-prime numbers as they always have 2 as the common factor.
    • The sum of two co-prime numbers is always co-prime with their product. For example, 5 and 9 are co-prime numbers. Here, 5 + 9 = 14 is co-prime with 5 × 9 = 45.
    • Two prime numbers are always co-prime. They have only 1 as their common factor. Consider 29 and 31. 29 has 2 prime factors, 1 and 29 only. 31 has 2 prime factors, 1 and 31 only. 29 and 31 are prime numbers. They have only one common factor 1. Thus they are co-prime. We can check any two prime numbers and get them as co-prime. For example, 2 and 3, 5 and 7, 11 and 13, and so on.
    • All pairs of two consecutive numbers are co-prime numbers. Any two consecutive numbers have 1 as their common factor.

    Consider a few pairs of such numbers. Let us try with 14 and 15.

    Numbers 14 15
    Factors 1,2,7,14 1,3,5,15
    Common Factor 1

    There are multiple such combinations where 1 is the only common factor.

    Also Check

    Co-prime and Twin Prime Numbers

    Co-prime numbers are those numbers whose HCF is 1. On the other hand, twin prime numbers are those prime numbers whose difference is always 2. For example, 3 and 5 are twin prime numbers. The following points list the difference between co-prime and twin prime numbers.

    • Twin prime numbers are always prime numbers while co-prime numbers can be composite numbers as well.
    • The difference between two twin primes is always 2 while the difference between two co-primes can be any number.
    • All the pairs of twin prime numbers are also co-prime, while all co-prime numbers may or may not be twin primes.
    • 1 forms a co-prime pair with every number, while it forms twin prime pair with only 3.

    Co-prime Numbers 1 to 100

    In the list of co-prime numbers from 1 to 100, there are many pairs that can be listed as co-prime numbers based on the above properties. Some of the co-prime number pairs that exist from 1 to 100 are (1, 2), (3, 67), (2, 7), (99, 100), (34, 79), (54, 67), (10, 11), etc. Try out forming more such pairs of co-prime numbers by yourself.

    Important Notes

    • Two numbers are co-prime if their GCF is 1. It can also be said that if the GCF of any two numbers is 1, those are co-prime numbers.
    • Co-prime numbers need not necessarily be prime numbers. For example, 12 and 35 are co-prime numbers, although, 12 and 35 are not prime numbers.

    Solved Examples on Co-prime Numbers

    Example 1: If 59 and 97 are co-prime, what would be their HCF?

    Solution: It is given that 59 and 97 are co-prime. They cannot have any common factor other than 1. Hence, their HCF is 1.

    Example 2: State true or false with respect to co-prime numbers.

    1. Co-prime numbers need not necessarily be prime numbers.
    2. Two even numbers are always co-prime.

    Solution:

    1. True, co-prime numbers need not necessarily be prime numbers.
    2. False, two even numbers are never co-prime.

    Frequently Asked Questions on Co-prime Numbers

    What is Co prime Number in Math?

    Coprime numbers is that which do not have any common factor other than 1. Co-prime numbers form a pair of numbers that may not necessarily be prime numbers. For example, (6,35) is a set of co-prime numbers, although 6 and 35 are composite numbers.

    What is the Difference Between Prime and Co-prime Numbers?

    A prime number is a number that has exactly two factors, 1 and the number itself. For example, 2, 3, 7, 11 and so on are prime numbers. Co-prime numbers are pairs of numbers whose HCF (Highest Common Factor) is 1. For example, (4,9) are co-primes because their only common factor is 1.

    How to Find the Co-prime of a Number?

    The HCF of two co-prime numbers is 1. Thus, to find the co-prime number of a number, it is sufficient to find a number that is NOT divisible by any of the factors of the given number. For example, if we have a number 12 and we need to find a co-prime number for 12, we can list 5 as its co-prime number because 5 is not divisible by any of the factors of 12 (except 1). Therefore, (5,12) forms a pair of co-prime numbers.

    Which Numbers are Identified as Co-prime Numbers?

    A single number cannot be co-prime. Only a pair of two numbers whose common factor is 1 forms a pair of co-prime. In other words, two numbers are said to be co-prime if their Highest Common Factor (HCF) is 1.

    Are 18 and 35 Co-prime Numbers?

    Yes, 18 and 35 are co-prime numbers. The factors of 18 are 1, 2, 3, 6, 9, 18. The factors of 35 are 1, 5, 7, 35. Here, 18 and 35 have no common factor other than 1. Thus, 18 and 35 are co-prime.

    Are Co-prime Numbers Always Prime Numbers?

    No, co-prime numbers need not necessarily be prime numbers. For example, 18 and 25 are co-prime numbers as their HCF is 1, although 18 and 25 are NOT prime numbers.

    What is the HCF of Two Co-prime Numbers?

    The HCF of two co-prime numbers is always 1. As 1 is the only common factor of two co-prime numbers.

    Are Two Successive Integers Always Co-prime?

    Yes, two successive positive integers are always co-prime because one is an even number, the other is odd, and the HCF of two consecutive numbers is always 1.

    Chat on WhatsApp Call Infinity Learn