MathsMaths MCQs for Class 12 with Answers Chapter 4 Determinants

Maths MCQs for Class 12 with Answers Chapter 4 Determinants

 

Determinants Class 12 Maths MCQs Pdf

Question 1.
Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q31
Answer:
(b) \(\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]\)

    Fill Out the Form for Expert Academic Guidance!



    +91


    Live ClassesBooksTest SeriesSelf Learning




    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Question 2.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q32
    Answer:
    (b) \(\left[\begin{array}{ccc}
    15 & 6 & -15 \\
    0 & -3 & 0 \\
    -10 & 0 & 5
    \end{array}\right]\)

    Question 3.
    Find x, if \(\left[\begin{array}{ccc}
    1 & 2 & x \\
    1 & 1 & 1 \\
    2 & 1 & -1
    \end{array}\right]\) is singular
    (a) 1
    (b) 2
    (c) 3
    (d) 4
    Answer:
    (d) 4

    Question 4.
    Find the value of x for which the matrix \(A=\left[\begin{array}{ccc}
    3-x & 2 & 2 \\
    2 & 4-x & 1 \\
    -2 & -4 & -1-x
    \end{array}\right]\) is singular.
    (a) 0, 1
    (b) 1, 3
    (c) 0, 3
    (d) 3, 2
    Answer:
    (c) 0, 3

    Question 5.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q35
    Answer:
    (b) \(-\frac{25}{13}\)

    Question 6.
    The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be
    (a) 9
    (b) 3
    (c) -9
    (d) 6
    Answer:
    (b) 3

    Question 7.
    The number of distinct real roots of \(\left|\begin{array}{ccc}
    \sin x & \cos x & \cos x \\
    \cos x & \sin x & \cos x \\
    \cos x & \cos x & \sin x
    \end{array}\right|=0\) in the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\) is
    (a) 0
    (b) 2
    (c) 1
    (d) 3
    Answer:
    (c) 1

    Question 8.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q53
    (a) 0
    (b) -1
    (c) 2
    (d) 3
    Answer:
    (a) 0

    Question 9.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q54
    Answer:
    (a) \(\frac{1}{2}\)

    Question 10.
    The value of the determinant \(\left|\begin{array}{ccc}
    x & x+y & x+2 y \\
    x+2 y & x & x+y \\
    x+y & x+2 y & x
    \end{array}\right|\) is
    (a) 9x2 (x + y)
    (b) 9y2 (x + y)
    (c) 3y2 (x + y)
    (d) 7x2 (x + y)
    Answer:
    (b) 9y2 (x + y)

    Question 11.
    For what value of x, matrix \(\left[\begin{array}{ll}
    6-x & 4 \\
    3-x & 1
    \end{array}\right]\) is a singularmatrix?
    (a) 1
    (b) 2
    (c) -1
    (d) -2
    Answer:
    (b) 2

    Question 12.
    Compute (AB)-1, If
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q37
    Answer:
    (a) \(\frac{1}{19}\left[\begin{array}{ccc}
    16 & 12 & 1 \\
    21 & 11 & -7 \\
    10 & -2 & 3
    \end{array}\right]\)

    Question 13.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q38
    Answer:
    (a) A-1

    Question 14.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q39
    Answer:
    (a) \(\frac{1}{11}\left[\begin{array}{cc}
    14 & 5 \\
    5 & 1
    \end{array}\right]\)

    Question 15.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q40
    Answer:
    (b) \(\frac{1}{17}\left[\begin{array}{cc}
    4 & 3 \\
    -3 & 2
    \end{array}\right]\)

    Question 16.
    If the points (3, -2), (x, 2), (8, 8) are collinear, then find the value of x.
    (a) 2
    (b) 3
    (c) 4
    (d) 5
    Answer:
    (d) 5

    Question 17.
    Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
    (a) y = 2x
    (b) x = 3y
    (c) y = x
    (d) 4x – y = 5
    Answer:
    (a) y = 2x

    Question 18.
    Find the minor of the element of second row and third column in the following determinant \(\left[\begin{array}{ccc}
    2 & -3 & 5 \\
    6 & 0 & 4 \\
    1 & 5 & -7
    \end{array}\right]\)
    (a) 13
    (b) 4
    (c) 5
    (d) 0
    Answer:
    (a) 13

    Question 19.
    If \(\Delta=\left|\begin{array}{lll}
    5 & 3 & 8 \\
    2 & 0 & 1 \\
    1 & 2 & 3
    \end{array}\right|\), then write the minor of the element a23.
    (a) 7
    (b) -7
    (c) 4
    (d) 8
    Answer:
    (a) 7

    Question 20.
    If a, b, c are the roots of the equation x3 – 3x2 + 3x + 7 = 0, then the value of \(\left|\begin{array}{ccc}
    2 b c-a^{2} & c^{2} & b^{2} \\
    c^{2} & 2 a c-b^{2} & a^{2} \\
    b^{2} & a^{2} & 2 a b-c^{2}
    \end{array}\right|\) is
    (a) 9
    (b) 27
    (c) 81
    (d) 0
    Answer:
    (d) 0

    Question 21.
    If \(\left|\begin{array}{ccc}
    1+a^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\
    \left(1+a^{2}\right) x & 1+b^{2} x & \left(1+c^{2}\right) x \\
    \left(1+a^{2}\right) x & \left(1+B^{2}\right) x & 1+c^{2} x
    \end{array}\right|\), then f(x) is apolynomial of degree
    (a) 2
    (b) 3
    (c) 0
    (d) 1
    Answer:
    (a) 2

    Question 22.
    \(\left|\begin{array}{lll}
    a^{2} & 2 a b & b^{2} \\
    b^{2} & a^{2} & 2 a b \\
    2 a b & b^{2} & a^{2}
    \end{array}\right|\) is equal to
    (a) a3 – b3
    (b) a3 + b3
    (c) (a3 – b3)2
    (d) (a3 + b3)2
    Answer:
    (d) (a3 + b3)2

    Question 23.
    If α, β, γ are in A.P., then \(\left|\begin{array}{ccc}
    x-3 & x-4 & x-\alpha \\
    x-2 & x-3 & x-\beta \\
    x-1 & x-2 & x-\gamma
    \end{array}\right|=\)
    (a) 0
    (b) (x – 2)(x – 3)(x – 4)
    (c) (x – α)(x – β)(x – γ)
    (d) αβγ (α – β)(β – γ)2
    Answer:
    (a) 0

    Question 24.
    \(\left|\begin{array}{ccc}
    1 & a^{2}+b c & a^{3} \\
    1 & b^{2}+c a & b^{3} \\
    1 & c^{2}+a b & c^{3}
    \end{array}\right|\)
    (a) -(a – b)(b – c)(c – a)(a2 + b2 + c2)
    (b) (a – b)(b – c)(c – a)
    (c) (a2 + b2 + c2)
    (d) (a – b)(b – c)(c – a)(a2 + b2 + c2)
    Answer:
    (a) -(a – b)(b – c)(c – a)(a2 + b2 + c2)

    Question 25.
    Evaluate the determinant \(\Delta=\left|\begin{array}{ll}
    \log _{3} 512 & \log _{4} 3 \\
    \log _{3} 8 & \log _{4} 9
    \end{array}\right|\)
    (a) \(\frac { 15 }{ 2 }\)
    (b) 12
    (c) \(\frac { 14 }{ 3 }\)
    (d) 6
    Answer:
    (a) \(\frac { 15 }{ 2 }\)

    Question 26.
    \(\left|\begin{array}{cc}
    x & -7 \\
    x & 5 x+1
    \end{array}\right|\)
    (a) 3x2 + 4
    (b) x(5x + 8)
    (c) 3x + 4x2
    (d) x(3x + 4)
    Answer:
    (b) x(5x + 8)

    Question 27.
    \(\left|\begin{array}{cc}
    \cos 15^{\circ} & \sin 15^{\circ} \\
    \sin 75^{\circ} & \cos 75^{\circ}
    \end{array}\right|\)
    (a) 0
    (b) 5
    (c) 3
    (d) 7
    Answer:
    (a) 0

    Question 28.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q4
    Answer:
    (b) 1

    Question 29.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q5
    Answer:
    (c) -1

    Question 30.
    Maths MCQs for Class 12 with Answers Chapter 4 Determinants Q41
    Answer:
    (a) \(\left[\begin{array}{cc}
    4 & 2 \\
    -1 & 1
    \end{array}\right]\)

    Question 31.
    If for the non-singular matrix A, A2 = I, then find A-1.
    (a) A
    (b) I
    (c) O
    (d) None of these
    Answer:
    (a) A

    Question 32.
    If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\) is
    (a) 1
    (b) 2
    (c) -1
    (d) -2
    Answer:
    (b) 2

    Question 33.
    A non-trivial solution of the system of equations x + λy + 2z = 0, 2x + λz = 0, 2λx – 2y + 3z = 0 is given by x : y : z =
    (a) 1 : 2 : -2
    (b) 1 : -2 : 2
    (c) 2 : 1 : 2
    (d) 2 : 1 : -2
    Answer:
    (d) 2 : 1 : -2

    Question 34.
    If 4x + 3y + 6z = 25, x + 5y + 7z = 13, 2x + 9y + z = 1, then z = ________
    (a) 1
    (b) 3
    (c) -2
    (d) 2
    Answer:
    (d) 2

    Question 35.
    If the equations 2x + 3y + z = 0, 3x + y – 2z = 0 and ax + 2y – bz = 0 has non-trivial solution, then
    (a) a – b = 2
    (b) a + b + 1 = 0
    (c) a + b = 3
    (d) a – b – 8 = 0
    Answer:
    (a) a – b = 2

    Question 36.
    Solve the following system of equations x – y + z = 4, x – 2y + 2z = 9 and 2x + y + 3z = 1.
    (a) x = -4, y = -3, z = 2
    (b) x = -1, y = -3, z = 2
    (c) x = 2, y = 4, z = 6
    (d) x = 3, y = 6, z = 9
    Answer:
    (b) x = -1, y = -3, z = 2

    Question 37.
    If the system of equations x + ky – z = 0, 3x – ky – z = 0 & x – 3y + z = 0 has non-zero solution, then k is equal to
    (a) -1
    (b) 0
    (c) 1
    (d) 2
    Answer:
    (c) 1

    Question 38.
    If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx – 12y – 14 = 0 has non-trivial solution, then the value of k is
    (a) -2, \(\frac{12}{5}\)
    (b) -1, \(\frac{1}{5}\)
    (c) -6, \(\frac{17}{5}\)
    (d) 6, \(-\frac{12}{5}\)
    Answer:
    (c) -6, \(\frac{17}{5}\)

    Question 39.
    If \(\left|\begin{array}{cc}
    2 x & 5 \\
    8 & x
    \end{array}\right|=\left|\begin{array}{cc}
    6 & -2 \\
    7 & 3
    \end{array}\right|\), then the value of x is
    (a) 3
    (b) ±3
    (c) ±6
    (d) 6
    Answer:
    (c) ±6

    Question 40.
    \(\left|\begin{array}{ccc}
    (b+c)^{2} & a^{2} & b c \\
    (c+a)^{2} & b^{2} & c a \\
    (a+b)^{2} & c^{2} & a b
    \end{array}\right|=\)
    (a) (a – b)(b – c)(c – a)(a2 + b2 + c2)
    (b) -(a – b)(b – c)(c – a)
    (c) (a – b)(b – c)(c – a)(a + b + c)(a2 + b2 + c2)
    (d) 0
    Answer:
    (c) (a – b)(b – c)(c – a)(a + b + c)(a2 + b2 + c2)

    Question 41.
    Find the area of the triangle with vertices P(4, 5), Q(4, -2) and R(-6, 2).
    (a) 21 sq. units
    (b) 35 sq. units
    (c) 30 sq. units
    (d) 40 sq. units
    Answer:
    (b) 35 sq. units

    Question 42.
    If the points (a1, b1), (a2, b2) and(a1 + a2, b1 + b2) are collinear, then
    (a) a1b2 = a2b1
    (b) a1 + a2 = b1 + b2
    (c) a2b2 = a1b1
    (d) a1 + b1 = a2 + b2
    Answer:
    (a) a1b2 = a2b1

    Question 43.
    If the points (2, -3), (k, -1) and (0, 4) are collinear, then find the value of 4k.
    (a) 4
    (b) 7/140
    (c) 47
    (d) 40/7
    Answer:
    (d) 40/7

    Question 44.
    Find the area of the triangle whose vertices are (-2, 6), (3, -6) and (1, 5).
    (a) 30 sq. units
    (b) 35 sq. units
    (c) 40 sq. units
    (d) 15.5 sq. units
    Answer:
    (d) 15.5 sq. units

    Question 45.
    \(\left|\begin{array}{ccc}
    2 x y & x^{2} & y^{2} \\
    x^{2} & y^{2} & 2 x y \\
    y^{2} & 2 x y & x^{2}
    \end{array}\right|=\)
    (a) (x3 + y3)2
    (b) (x2 + y2)3
    (c) -(x2 + y2)3
    (d) -(x3 + y3)2
    Answer:
    (d) -(x3 + y3)2

    Question 46.
    The value of \(\left|\begin{array}{ccc}
    \cos (\alpha+\beta) & -\sin (\alpha+\beta) & \cos 2 \beta \\
    \sin \alpha & \cos \alpha & \sin \beta \\
    -\cos \alpha & \sin \alpha & \cos \beta
    \end{array}\right|\) is independent of
    (a) α
    (b) β
    (c) α, β
    (d) none of these
    Answer:
    (a) α

    Question 47.
    Let \(\Delta=\left|\begin{array}{ccc}
    x & y & z \\
    x^{2} & y^{2} & z^{2} \\
    x^{3} & y^{3} & z^{3}
    \end{array}\right|\), then the value of ∆ is
    (a) (x – y) (y – z) (z – x)
    (b) xyz
    (c) (x2 + y2 + z2)2
    (d) xyz (x – y) (y – z) (z – x)
    Answer:
    (d) xyz (x – y) (y – z) (z – x)

    Question 48.
    The value of the determinant \(\left|\begin{array}{ccc}
    \alpha & \beta & \gamma \\
    \alpha^{2} & \beta^{2} & \gamma^{2} \\
    \beta+\gamma & \gamma+\alpha & \alpha+\beta
    \end{array}\right|=\)
    (a) (α + β)(β + γ)(γ + α)
    (b) (α – β)(β – γ)(γ – α)(α + β + γ)
    (c) (α + β + γ)2 (α – β – γ)2
    (d) αβγ (α + β + γ)
    Answer:
    (b) (α – β)(β – γ)(γ – α)(α + β + γ)

    Question 49.
    Using properties of determinants, \(\left|\begin{array}{ccc}
    1 & a & a^{2}-b c \\
    1 & b & b^{2}-c a \\
    1 & c & c^{2}-a b
    \end{array}\right|=\)
    (a) 0
    (b) 1
    (c) 2
    (d) 3
    Answer:
    (a) 0

    Question 50.
    Find the minor of 6 and cofactor of 4 respectively in the determinant \(\Delta=\left|\begin{array}{lll}
    1 & 2 & 3 \\
    4 & 5 & 6 \\
    7 & 8 & 9
    \end{array}\right|\)
    (a) 6, 6
    (b) 6, -6
    (c) -6, -6
    (d) -6, 6
    Answer:
    (d) -6, 6

    We hope the given Maths MCQs for Class 12 with Answers Chapter 4 Determinants will help you. If you have any query regarding CBSE Class 12 Maths Determinants MCQs Pdf, drop a comment below and we will get back to you at the earliest.

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91


      Live ClassesBooksTest SeriesSelf Learning




      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.